
Eur. Phys. J. B 6, 503–510 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Phase diagram of randomly polymerized membrane

A. Benyoussef1,a, D. Dohmi1, A. El Kenz1, and L. Peliti2

1 Laboratoire de Magnétisme et Physique des Hautes Énergies, Département de Physique, Faculté des Sciences,
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Abstract. Using a replica formalism, a generalization of a recent mean field model corresponding to the
observed wrinkling transition in randomly polymerized membranes is presented. In this model we study
the effects of global fluctuations of the surface normals to the flat membrane, which can be introduced
by a random local field. In absence of these global fluctuations, we show that, the model exhibits both
continuous and discontinuous transitions between flat and wrinkled phases, contrary to what has been
predicted by Bensimon et al. and Attal et al. Phase diagrams both in replica symmetry and in breaking
of replica symmetry in sense of Almeida and Thouless are given. We have also investigated the effects of
global fluctuations on the replica symmetry phase diagram. We show that, the wrinkled phase is favored
and the flat phase is unstable. For large global fluctuations, the transition between wrinkled and flat phases
becomes first order.

PACS. 87.22.Bt Membrane and subcellular physics and structure – 75.10.Nr Spin-glass and other random
models

1 Introduction

Flexible membranes are two dimensional generalization of
linear polymer chains. The properties of a 2D membrane,
embedded in three dimensional space, depend strongly on
the internal order, crystalline, hexatic, or fluid. As in other
realizations of 2D matter, defects, and their interactions,
affect crucially the stability of a given phase. In contrast
to linear polymers, crystalline membranes, also known as
tethered or polymerised membranes are expected to ex-
hibit quite different physical properties from their linear
counterparts. In particular, they are predicted to have
a remarkable low-temperature ordered phase. This or-
dered, or flat phase, is characterized by long-range order in
the orientation of surface normals. At high temperature,
or equivalently low bending rigidity, phantom (non-self-
avoiding) crystalline membranes will entropically disorder
and crumple. Separating these two phases should be a
crumpling transition. So, different phases of a crystalline
membrane can be distinguished by the behaviour of the
surface normals. In the flat phase the normals will have
long-range order, while in the crumpled phase the normals
eventually decorrelate. These systems have aroused con-
siderable interest both from theoretical and experimental
point of view [1].

Theoretically, the crumpling transition of tethered
membranes has been understood. Indeed, Nelson et al. [2]
and Paczuski et al. [3] have found that at low tempera-
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ture a stable flat phase exists. However, more extensive
computer simulations [4,5] on large systems have since
shown convincingly that, in the presence of only excluded
volume interactions, tethered membranes do not crumple
but remain flat. This lack of a crumpling transition has
been explained in terms of an implicit bending rigidity
which is induced by the self-avoidance requirement [6]. An
alternative explanation by using a Gaussian variational
approximation [7], and an expansion in large embedding
space dimension d [8], show that the flat phase is stable
for d = 3 and 2D membranes crumple only for d > 4. This
result is in agreement with numerical simulations [5]. In
a related calculation, using a variational approach [9], the
authors have found that the membrane can crumple only
for d > 3.

Recent studies of membranes with defects and
quenched random disorder have been prompted in part
by experimental works [10–12]. These experiments show
that partially polymerised membranes undergo, possi-
bly first-order, a reversible phase transition from high-
temperature phase characterized by a smooth, floppy sur-
face, to a low-temperature phase. In this last phase the
membranes appear rigid and highly wrinkled. It is impor-
tant to notice that this phase is very different from the
so-called crumpled phase of membrane [1], in which the
local normals to the membrane fluctuate in time. How-
ever, in the wrinkled phase the normals are randomly
frozen. Based on the mean field solution of a model for
a heterogeneous (disordered) membrane, this transition
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has been linked to the spin glass transition of magnetic
systems [11,13–15]. Alternatively, Nelson et al. [16] and
Morse et al. [17] have analysed the stability of the flat
phase of disordered membranes by the field theoretical
method (ε = 4−Dexpansion), Radzihovsky and Le Dous-
sal [18] have studied this problem in the large d limit. As
result of these works it appears that the randomness in
the metric destabilizes a flat membrane towards a pos-
sible spin glass phase, whereas adding random curvature
yield a new T = 0 flat phase, with a crossover to a glassy
phase at higher temperature.

From the magnetic point of view a membrane
model [19] is constrained spin system. In fact, the spin
(surface normal) must be normal to the underlying sur-
face, and the constraint is of course essential to the sta-
bility of the ordered phase. But within the mean field ap-
proximation [2], forfeiting all spatial information, where
one is interested in obtaining the possible thermodynamic
phases. The constraint may be relaxed as long as it is sat-
isfied in all phases. With this drastic approximation, the
disordered membrane model is akin to Heisenberg model
with random Dzyaloshinky Moriya (DM) interactions
[13,14]. Thus, it might be helpful to keep in mind the
magnetic analogy where the ferromagnetic, paramagnetic
and spin glass phases are the analog of flat, crumpled and
wrinkled phases, respectively.

In this paper we will use a generalized version of that
mean-field model of disordered membranes by adding a
Gaussian random local field term. This local field can
be interpreted as global fluctuations of the surface nor-
mals induced by inhomogeneities of elastic properties of
membrane. Within the replica symmetry (RS) solution,
we have calculated the free energy and constructed set of
a self-consistent equations, as is well-known in the mean
field procedure. In zero random field, we find that our
phase diagram differs in part from that obtained by Bensi-
mon et al. [13] and Attal et al. [14]. In fact, in our analyzes
we show that the model exhibits both a first and second
order transitions between flat (ferromagnetic) and wrin-
kled (spin glass) phases, and reentrant phenomenon oc-
curs. However, in their works [13,14] they predicted within
the RS solution that, the line transition between flat and
wrinkled phases is only second order. Moreover, by con-
sidering small fluctuations of the order parameter around
the symmetric solution we derive, analytically, a line of in-
stability. This line is analogous to the Almeida-Thouless
(AT) line in spin glass systems [20], above which only a
solution involving broken replica symmetry is stable. On
the other hand, in presence of random field, we restrict
ourselves to the replica symmetric solution. We present a
study of the effect of a local quenched random field on the
RS phase diagram of randomly frustrated membrane. A
phase diagram for various values of random local width is
given. We find that the random field plays the same role
as that of randomness in preferred metric.

The outline of this paper is as follows: in Section 2 we
present the general formalism of replica theory applicable
to our model. In Section 3 we derive the RS solution for
the order parameters in presence of Gaussian random lo-

cal field. In Section 4 the RS phase diagram and limit of
stability of RS solution against RSB in zero random field
are derived, also generalized RS phase diagram is given.
Finally, Section 5 contain our conclusions.

2 General formalism of replica theory

We consider the model describing a membrane with
quenched random spontaneous curvature [13,14] from
the magnetic point of view, to which we added a local
quenched random field. Within the mean field approxi-
mation [2], the model of a membrane with a randomness,
is characterized by the following Hamiltonian

H =
−K

2N

∑
ı6=

SıS −
1

2

∑
ı6=

Dı (Sı ∧ S)−
∑
ı

hıSı1 (1)

where
∑3
µ=1 SıµSıµ = 3, with ı = 1, ..., N and the sum∑

ı6= extends over all pairs of pseudospin Sı, and K is the
bending rigidity. Dı is a random vector attached to the
membrane, includes a local random curvature, and hı cho-
sen in µ = 1 direction is a random local field, which can be
interpreted as global fluctuations of the normals induced
by inhomogeneities of elastic properties of membrane. The
Dı and hı are quenched random variables distributed ac-
cording to their respective Gaussian probability densities:
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The N dependence in the probability distribution P (Dı)
is imposed, as usual for infinite range problems, such as
to ensure a sensible thermodynamic limit.

The free energy averaged over the joint probability dis-
tribution P (Dı) and P (hk) can be obtained via the well-
known replica formalism for the partition function Z, i.e.:
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with β ≡ 1/T , ı is indexes the pseudospin and α the replica
label. The limit N →∞ is implied.

Our analysis is a generalization of references [13,14]
to the case h 6= 0 and that of reference [21] correspond-
ing to the case J = 0 and h 6= 0 (Gaussian random field
Heisenberg model). By carrying out the integrations over
Dı and hk in equation (5), and linearizing all quadratic
forms which appear by using the standard and non stan-
dard Hubbard Stratonovich (HS) transformation [22] and
hence saddle point integration, the free energy per pseu-
dospin can be written as, with the same variables used in
references [13,14]:

βf = −
3

2
β2
γ − lim
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1

n
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]
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where
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above, α and β are replica labels and
∑

(αβ) denote sums

over distinct pairs of replica. The notations βγ ≡ βJ , kγ ≡
K/J ,Tαβµ ≡ 2rαβ − (3δµ,1 − 1)∆αβ has been used.

The extrema of the functional g(mα, rαβ ,∆αβ , qα) give
us the coupled self-consistent equations:

mα = 〈Sα1 〉, ∀α
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1

3
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where 〈. . . 〉 indicate thermal averages with respect to the
effective Hamiltonian Qn. The parameters mα, rαβ , ∆αβ

and qα are the magnetization, isotropic, anisotropic part
of spin glass and quadrupolar order parameters, respec-
tively. As in other anisotropic vector models [23] the order
parameters qα and mα are strictly α-independent both in
replica symmetric state and in the case of replica symmet-
ric breaking (RSB).

3 Replica symmetric solution

The RS state is obtained by setting rαβ = r, ∆αβ = ∆
and Tαβµ = Tµ in equations (8, 9). Then, the analytic con-
tinuation n→ 0 in equation (7) may be easily performed.

With this choice, the free energy per pseudospin is given
by:
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with
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By linearizing the quadratic forms in S1, the trace in
equation (12) can be evaluated as an integral over the
3-dimensional solid angle. We finally have:
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Thus, the set of coupled self consistent equations now
yields:
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We could have also obtained the set of equation (17) di-
rectly from equation (10), since within the RS approxima-
tion any disorder averaged product of thermodynamic av-
erages is simply related to an average in replica space [24].
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4 Results and discussions

4.1 Phase diagram in zero random field

In this section we present numerical solutions to the set of
coupled consistent equations, equation (17) for zero width
of random field. First, it is well-known that in the ab-
sence of an homogeneous field, the quadrupolar parame-
ter q is zero, while the anisotropic part of the spin glass
order parameter vanishes in spin glass and paramagnetic
phases [25] (see below, Fig. 2). Consequently, the phase di-
agram can be determined with ∆ = q = 0. The resulting
equations are given by:
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∫ ∏
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where
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2

(19)

and

aµ = tµβγ
√

2r + βγkγmδµ,1. (20)

Hence, only three phases are possible [25] in this case,
namely, the paramagnetic (r = 0,m = 0), the isotropic
spin glass (r 6= 0,m = 0) and ferromagnetic (r 6= 0,m 6=
0), which correspond to, crumpled, wrinkled and flat
phases of membrane, respectively.

At this level, we can examine the equation (18) ana-
lytically. If the transition line from wrinkled phase to flat
phase is continuous, we can expand the equation (18) for
small m. Then the second-order transition line is given by:
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the critical value of disorder at T = 0 for which the
flat phase becomes unstable is Jc/K =

√
4/3π, which

is far from the value 2/
√

18π, as quoted by previous
authors [13,14].

Moreover, by performing an expansion in powers of aµ
up to eighth order, which is equivalent to high temperature
expansion for βf up to seventh order in βγ , we find from
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Fig. 1. Phase diagram of Hamiltonian (1) with zero random
local field h/K. The continuous line is the second order tran-
sition and the dashed line is the first order transition.

equation (18):
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Equation (22) indicates that the model exhibits a sec-
ond order transition between flat and crumpled phases
at T/K = 1 for J/K <

√
2/2, and between crumpled and

wrinkled phases at J/K =
√

2/2 for T/K > 1. Indeed, this
equation provide information only for high temperature
and is not able to reproduce the correct phase diagram at
low temperature. However, the RS phase diagram can be
obtained completely by investigating the detailed numeri-
cal solutions of equation (17) (with h = 0) each time with
a minimization of the free energy given by equation (11)
to locate the correct transition point.

The result is shown in Figure 1 where we plot the RS
phase diagram supported by the behavior of order param-
eters m, r, ∆ and q as a function of temperature. The exis-
tence of crumpled (m = 0, r = 0), wrinkled (m = 0, r 6= 0)
and flat (m 6= 0, r 6= 0) phases were previously recog-
nized [13,14]. The novel features of the phase diagram is
the reentrance phenomenon which appears at low temper-
ature, and the existence of first and second order transi-
tion between wrinkled and flat phases.

As seen in Figure 2, one observes that for J/K = 0.4
and J/K = 0.9, there are continuous transitions re-
spectively, between flat and wrinkled phases (Fig. 2a),
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Fig. 2. Order parameters as a function of reduced temperature for h/K = 0 and various values of J/K. The label (1), (2), (3)
and (4) correspond respectively to m, r, ∆ and q.

and between wrinkled and crumpled phases (Fig. 2b) (see
also Eq. (22)). Whereas, in Figure 2c, we show that the
model exhibits a reentrant transition (flat-wrinkled-flat)
at low temperature for J/K = 0.64, by a first order tran-
sition from a flat to wrinkled phase and from a wrinkled
to flat phase; while for J/K = 0.67 this transition is of
second order (Fig. 2d). Note that in Figure 2, the varia-
tion of order parameters q and ∆ as function of temper-
ature is very small in vicinity of the flat-wrinkled phase
transition, then our assumption ∆ = q = 0 is reason-
able. Consequently, the second order boundary between
flat and wrinkled phases can be obtained analytically by
equation (21).

4.2 Stability limit of RS solution in zero random field

It is well-known that the RS solution is generally unstable
against RSB [20,26]. In presence or absence of an homo-
geneous external field, a borderline separating the regions

of stable and unstable RS solution can be drawn, known
as the AT line [20]. Thus the spin glass transition should
correspond to a change from a single RS spin glass or-
der parameter at T > Tg (where Tg is the temperature
of freezing) to a RSB form at T < Tg represented by the
Parisi function r(x) [27], 0 ≤ x ≤ 1. Following Almeida
and Thouless the stability of given solution is ensured by
positive definite Hessian matrix associated with the func-
tional g(mα, rαβ ,∆αβ , qα) given by equation (8).

As discussed in detail in references [20,26], the problem
of stability reduces to the requirement that all eigenvalues
of this Hessian matrix must be negative. In our case, it can
be shown that the RS solution is stable if:

β−2
γ >

2

3

∫ ∏
µ

dtµ√
2π

exp

(
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1

2
t2µ

)
φ(m, r) (23)
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where

φ(m, r) ≡ 9 coth4
(√

3|a|
)

+ 9
(
1− 2 coth2

(√
3|a|

))
−

4
√

3
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+
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(
2 +

1
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)
(24)

the order parameter m and r are given by equation (18).
The line of instability obtained by numerical evalu-

ation of simultaneous solution of equation (18) and the
equality in equation (23) is shown in Figure 3. Above that
line only a solution with broken replica symmetry pro-
vides a correct description of wrinkled state. It should be
noted that approximate analytic expression for this line
can be derived for the region where T and J go to zero.
The result we have in this region is:

T

J
∼ α0 exp

(
−

3

4

(
K

J

)2
)

(25)

where α0 = 0.65416. Notice that the AT line of this model
has the same behavior at low temperature as the AT line
of a SK model. This result is not surprising because of
the strong coupling between the spin components in this
model [25].

4.3 Effect of random field on flat phase

Recently it has been shown that randomness in the met-
ric destabilizes a flat membrane towards a wrinkled phase
[18,28], whereas random curvature yields a new T = 0 flat
phase [13,14]. Here we discuss the effect of random local
field on the flat phase. Within the replica symmetric solu-
tion, the free energy per pseudospin and the equilibrium
equations are given by equations (11, 17), respectively. As
is seen in equation (11), the variance of the random field
h acts as an effective ordering field for the wrinkled state
(r 6= 0,m = 0), the corresponding order parameters r and
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Fig. 4. Mean field phase diagram in the presence of a random
local field of width h/K. The number accompanying each curve
correspond to the selected values of h/K. The dashed lines
define the first order transition and the solid line denote the
second order transition.

∆ are non zero at all temperatures. That behavior which
have already been presented in the literature [29,30], can
be seen from the high temperature expansion of the equa-
tion (17) which gives at relevant order to:
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2∆

(
1−

68

15
(βh)

2

)
+ · · ·

q =
2

5
(βh)

2 −
3

5
βγ

2q

(
1 +

4

7
(βh)

2

)
+ · · · (26)

Thus, a conventional phase transition, where r would
change from zero to a non zero value, is here remarkably
absent (see Fig. 5).

In order to draw a phase diagram for different values
of h/K, we have studied the detailed numerical solutions
of equation (17) with a minimization of the free energy
given by equation (11). The surface of second order phase
transitions can be calculated analytically by linearizing
the parameter m in equation (17) around m = 0, which
gives:

T

K
= [1 + 2q − (r + 2∆)] (27)

where r, ∆ and q are determined via equation (17). The
resulting phase diagram is displayed in Figure 4. From
which, one can observes that there exists a tricritical line
separating the surfaces of second and first order transi-
tions.



A. Benyoussef et al.: Phase diagram of randomly polymerized membrane 509

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

O
rd

er
 p

ar
am

et
er

s 

Reduced temperature T/K

(1) 

(2) 

(3)

J/k=0.46 

h/k=0.7 

(3)

(4)

(4)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

O
rd

er
 p

ar
am

et
er

s 

Reduced temperature T/K

(1) 

(2) 

(3)

(3)

(4)

(4)

(2) 

J/K=0.4

h/K=0.7

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

O
rd

er
 p

ar
am

et
er

s 

Reduced temperature T/K

(1) 

(1) 

(3)(4)

J/k=0.59 

h/k=0.4 

(3)(4)

(2) 

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

O
rd

er
 p

ar
am

et
er

s 

Reduced temperature T/K

(1) 

(2)(3) 

(4)

(4)

(2)(3) 

J/K=0.01

h/k=0.9

(d)

Fig. 5. Order parameters as function of reduced temperatures for selected values of h/K and J/K. The label (1), (2), (3) and
(4) correspond respectively to m, r, ∆ and q.

The dependence of m, r, ∆ and q as function of the
temperature for some relevant values of h/K and J/K,
is shown in Figure 5. From these figures it is clear that the
magnetization undergoes a discontinuity at the first or-
der transition (Fig. 5a), while its vanishes continuously at
the second order transition (Fig. 5b). For h/K = 0.4 and
J/K = 0.59, the magnetization vanishes twice (Fig. 5c);
this is a feature of a reentrant phenomena in agreement
with the phase diagram in Figure 4. However, when in-
creasing the variance of random field h/K, the reentrant
phenomena is canceled. This result is in agreement with
previous works related to spin glass model [30]. More-
over, by increasing the variance of random field, the flat
phase is unstable and the wrinkled phase takes over this
result is consistent with what has been concluded in refer-
ences [18,28]. Furthermore, when h/K become large then
h/K = 0.712 (see Fig. 5d), the random field makes the
transition between flat and wrinkled phase first order,
which is in agreement with our previous investigation of

the Gaussian random field Heisenberg model using the
replica technique [21].

5 Conclusion

We have studied the randomly frustrated membrane
model in presence of a Gaussian random field with vari-
ance h. This type of randomness could be caused by a
global fluctuations of surface normals to the membrane.
Within replica symmetry and h = 0, we have take up
again the investigation of randomly disordered membrane
model which has been introduced previously [13,14]. We
find that, the model exhibits a second and first order
transition between flat (ferromagnetic) and wrinkled (spin
glass) phases, and the reentrance phenomenon occurs at
low temperature. These main results which are not men-
tioned in references [13,14]. A related model has been
studied by Rubinstein et al. [31] who also pointed out
the existence of a reentrant transition from a ferromag-
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netic (flat) ordered phase to a spin glass (wrinkled) phase.
However, by analogy to spin glass problem [30], the reen-
trance of wrinkled phase is shown to be linked to the
negative entropy at T = 0 which makes the RS solution
to be a poor representation of the wrinkled phase. Thus,
it would be very useful to find a replica symmetry break-
ing solution of a such model with h = 0. We note that a
Parisi RSB formalism for this model has been derived by
Attal et al. [14]. However, in our analysis of RSB we have
follow the same route as Almeida and Thouless in their
investigation of instability limit of RS solution for S–K
model [20]. We have find the analytical equations of the
equivalent AT line of that model. Therefore, as in refer-
ence [14], within the RSB scheme we can concluded that
(see Eq. (25)) the model exhibits a wrinkled-flat phase
as T go to zero even for infinitesimal disorder. On other
hand, we have also investigate the randomly frustrated
membrane by adding a Gaussian random field, within the
RS solution. We have derive a generalized phase diagram
of the model discussed here and that in reference [21]. We
find that the random field width makes the flat phase un-
stable and the wrinkled phase takes over. Moreover, the
reentrant effect is completely removed when h increases
and the transition between wrinkled and flat phase is first
order.

This work has been made in the frame of an exchange program
between the CNRI (Italy) and the CNCPRST (Morocco).The
authors would like to thank both organization.
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